
• GrapheneOS
• Features
• Install
• Build
• Usage
• FAQ
• Releases
• Source
• History
• Articles
• Donate
• Contact

Usage guide

This is a guide covering some aspects of using GrapheneOS. See the features page for a list of 
GrapheneOS features.

Table of contents

• System navigation
• Gesture navigation
• 3-button navigation

• Storage access
• Storage Scopes

• Contact Scopes
• Accessibility
• Auditor
• Updates

• Settings
• Security
• Disabling
• Sideloading

• USB-C port and pogo pins control
• Web browsing
• Camera

• GrapheneOS Camera app
• Pixel Camera

• Exec spawning
• Bugs uncovered by security features

#contact-scopes
https://grapheneos.org/
#bugs-uncovered-by-security-features
#exec-spawning
#pixel-camera
#grapheneos-camera-app
#camera
#web-browsing
#usb-c-port-and-pogo-pins-control
#updates-sideloading
#updates-disabling
#updates-security
#updates-settings
#updates
#auditor
#accessibility
#storage-scopes
#storage-access
#3-button-navigation
#gesture-navigation
#system-navigation
#table-of-contents
https://grapheneos.org/features
#usage
https://grapheneos.org/contact
https://grapheneos.org/donate
https://grapheneos.org/articles/
https://grapheneos.org/history/
https://grapheneos.org/source
https://grapheneos.org/releases
https://grapheneos.org/faq
https://grapheneos.org/build
https://grapheneos.org/install/
https://grapheneos.org/features
https://grapheneos.org/


• Wi-Fi privacy
• Scanning
• Associated with an Access Point (AP)

• Network location
• LTE-only mode
• Sandboxed Google Play

• Installation
• Location sharing
• Configuration
• Limitations

• eSIM support
• Android Auto
• Banking apps
• App link verification
• Carrier functionality

System navigation

By default, GrapheneOS uses gesture-based navigation. We recommend reading our guide on 
gesture navigation and giving it a chance even if you think you won't like it. Our experience is that 
when armed with the appropriate knowledge, the vast majority of users prefer the newer gesture 
navigation approach.

The system navigation mode can be configured in Settings > System > Gestures > Navigation mode. 
The same menu is also available in Settings > Accessibility > System controls > Navigation mode.

Gesture navigation

The bottom of the screen is a reserved touch zone for system navigation. A line is displayed in the 
center to show that the navigation bar is present across the entire bottom of the screen. In most 
apps, this area will display padding. Modern apps are able to tell the OS that they can handle not 
having the padding to display app content there while still not being able to receive touches from it. 
Open up the Settings app for an example.

Swiping up from the navigation bar while removing your finger from the screen is the Home gesture.

Swiping up from the navigation bar while holding your finger on the screen before releasing is the 
Recent Apps gesture. The most recently opened activity is always on the furthest right. Each step left
goes one step back through the history of recently opened apps. Opening an app with the recent 
apps activity will place it on the furthest right in the recent apps order just like a new app being 
opened.

The recent apps activity has a screenshot button as an alternative to holding power and volume 
down while using an app.

#gesture-navigation
#system-navigation
#carrier-functionality
#app-link-verification
#banking-apps
#android-auto
#esim-support
#sandboxed-google-play-limitations
#sandboxed-google-play-configuration
#sandboxed-google-play-location-sharing
#sandboxed-google-play-installation
#sandboxed-google-play
#lte-only-mode
#network-location
#wifi-privacy-associated
#wifi-privacy-scanning
#wifi-privacy


Rather than opening the recent apps activity, you can swipe left on the navigation bar for the 
Previous app and swipe right for the Next app. This will not change the recent apps order. This is 
usually the best way to navigate through recent apps.

Swiping from either the left or the right of the screen within the app (not the navigation bar) is the 
Back gesture. Apps are supposed to avoid implementing conflicting gestures, but have the option to 
override this gesture if they truly need to get rid of it. Some legacy apps without active development 
of their UI still haven't addressed this despite gestures being the default for several years on Google 
Android. You can avoid triggering the back gesture in one of 2 easy ways: avoid swiping from right 
near the edge or hold your finger on the side of the screen for a moment before swiping. The more 
advanced option is using a diagonal swipe pointing sharply to the bottom of the screen since this will
bypass the back gesture but will still trigger most app gestures. The advanced option is the most 
convenient approach once you get used to doing it.

The launcher uses a swipe up gesture starting anywhere on the screen to open the app drawer from 
the home screen. You need to start that gesture above the system navigation bar since any gesture 
starting on the navigation bar is handled by the OS as a system navigation gesture.

3-button navigation

3-button navigation is Android's oldest touchscreen-based navigation system. It will remain 
supported for the foreseeable future to provide accessibility for users unable to easily use the 
gestures. It's older than 2-button navigation but isn't considered a legacy feature.

A large row across the bottom of the screen is reserved for navigation buttons. The Back button is 
on the left, the Home button is in the center and the Recent Apps button is on the right.

In the recent apps activity, the most recently opened activity is always on the furthest right. Each 
step left goes one step back through the history of recently opened apps. Opening an app with the 
recent apps activity will place it on the furthest right in the recent apps order just like a new app 
being opened.

The recent apps activity has a screenshot button as an alternative to holding power and volume 
down while using an app.

Storage access

GrapheneOS inherits the same baseline approach to storage access as modern Android and extends
it with our Storage Scopes feature as a fully compatible alternative to standard Android storage 
permissions. This section provides an overview of the standard approach to storage access 
primarily to provide context for explaining Storage Scopes.

There are two types of app-accessible storage:

• app-private ("internal") storage:
• inaccessible to other apps
• doesn't require any permission for full access
• cleared when the app is uninstalled

#storage-access
#3-button-navigation


• shared ("external") storage:
• shared with other apps
• access is regulated with permissions
• files persist after uninstallation

Android/data/ and Android/obb/ directories aren't considered to be parts of shared storage.

For modern apps, access to the shared storage is controlled in the following way:

• Without any storage permission, an app is allowed to:
• create media files in standard directories (audio in Music/, Ringtones/, etc, images in 

Pictures/ and DCIM/, videos in DCIM/ and Movies/)
• create files of any type (both media and non-media) in Documents/ and Download/
• create new directories inside standard directories
• rename/delete files that were created by the app itself
• rename/delete directories if it can rename/delete all files within those directories

• Media access permission ("Allow access to media only", READ_EXTERNAL_STORAGE) allows 
the app to read media files that were created by other apps. Non-media files remain invisible 
to it. For apps targeting Android 13, the media access permission is split into 
READ_MEDIA_IMAGES, READ_MEDIA_VIDEO and READ_MEDIA_AUDIO.

• Media management special access permission ("Allow app to manage media", 
MANAGE_MEDIA) allows the app to delete and to rename media files created by other apps.

• "All files access" special access permission (MANAGE_EXTERNAL_STORAGE) allows the app 
to read, create, rename and delete files and directories of any type in any directory of the 
shared storage (including the root directory).

For legacy apps (those that target Android 9 or lower and those that target Android 10 and request 
legacy storage mode), storage access permissions have a different meaning:

• Without a storage permission, app is not allowed any type of access to any files or directories 
inside the shared storage.

• READ_EXTERNAL_STORAGE permission allows the app to read both media and non-media 
files in any directory.

• WRITE_EXTERNAL_STORAGE permission allows the app to create, rename and delete files 
(of any type) and directories in any directory of shared storage (including the root directory).

Additionally, both modern and legacy Android apps can open the system file picker interface to have 
the user store or load one or more files/directories on their behalf. This type of access doesn't 
require any of the permissions listed above. Using this approach gives the user control over where 
files are stored in their home directory and which files/directories can be used by the app. This is 
based on the Storage Access Framework (SAF) introduced in Android 4.4. SAF allows the user to 
grant access to files/directories in their home directory, external drives and also app-based storage 
providers such as network shares, cloud storage, an encrypted volume, an external drive with a 
filesystem the OS doesn't support for external drives, etc. This is the only way to use those app-
based storage providers and modern Android has removed the legacy approach for accessing 
external drives.



Storage Scopes

GrapheneOS provides the Storage Scopes feature as a fully compatible alternative to the standard 
Android storage permissions. Storage Scopes can be enabled only if the app doesn't have any 
storage permission. Enabling Storage Scopes makes the app assume that it has all of storage 
permissions that were requested by it, despite not actually having any of them.

This means that the app can't see any of the files that were created by other apps. The app is still 
allowed to create files and directories, same as any other modern app that doesn't have any storage 
access permission.

Apps that would normally use the legacy storage mode are switched to the modern storage mode 
when Storage Scopes is enabled.

If the app requests the "All files access" permission (or is a legacy app that requests 
WRITE_EXTERNAL_STORAGE permission), then the write restrictions that are normally applied to 
apps that don't have a storage access permission are relaxed to provide the same write access that 
the app would have if it was granted the "All files access" permission. This is done to ensure 
compatibility with apps that, for example, create a new directory in the root of shared storage, or 
write a text file (eg lyrics.txt) to the Music/ directory (normally, only audio files can be placed there). 
No additional read access is granted to such apps, they still can see only their own files.

For all other apps, enabling Storage Scopes doesn't grant any additional storage access beyond 
what a modern app that doesn't have any storage permission already has.

Optionally, users can specify which of the files created by other apps the app can access. Access 
can be granted to a specific file or to all files in a directory. The standard SAF picker is used for this 
purpose in a special mode where it shows only shared storage files/directories.

The most significant limitation of Storage Scopes is the fact that the app will lose access to files that
it created if it's uninstalled and then installed again, same as any other app that doesn't have a 
storage access permission. As a workaround, users can manually grant access to these 
files/directories via SAF picker.

Contact Scopes

On Android, contact access is controlled with an all-or-nothing Contacts permission, which grants 
both read and write access to all contacts stored on the device.

A lot of apps (e.g. popular messaging apps) refuse to work unless the Contacts permission is 
granted.

GrapheneOS provides the Contact Scopes feature as an alternative to granting the Contacts 
permission. Enabling Contact Scopes makes the app assume that it has the Contacts permission, 
despite not actually having it. By default, an app that has Contact Scopes enabled is not allowed any 
kind of contact access.

Optionally, read access can be granted to the following scopes:

#contact-scopes
#storage-scopes


• Contact data (phone number or email). Access to each type of number and email in a contact 
is granted separately. Access to the contact name is granted automatically.

• Single contact. Access is granted to all contact data, except contact photo.
• Contact group ("label"). Equivalent to granting access to all contacts in the group. Any contact 

can be in any number of contact groups.

The type and name of the account that the contact is stored in are fully hidden from the app. The 
name of the contact account is usually the same as the email address of that account.

When Contact Scopes is enabled, write access is fully blocked: the app is not allowed to edit any 
contact data, add or remove contacts, etc.

Accessibility

GrapheneOS includes all of the accessibility features from the Android Open Source Project and 
strives to fill in the gaps from not including Google apps and services. We include our own fork of the
open source TalkBack accessibility service along with a Monochromacy option for the standard 
color correction menu.

GrapheneOS does not yet include a text-to-speech (TTS) service in the base OS due to limitations of 
the available options. Including one is planned in the future when a suitable option is available. 
RHVoice and eSpeak NG are both open source and are the most common choices by GrapheneOS 
users. Both of these work fine but have licensing issues. eSpeak NG has added Direct Boot based on 
our request for it, meaning it is able to function before the first unlock. RHVoice is missing Direct 
Boot and can't run before the first unlock. Installing and setting up either one of these or another TTS
app will get TalkBack working. TalkBack itself supports Direct Boot and works before the first unlock 
but it needs to have a TTS app supporting it in order to do more than playing the activation sound 
before the first unlock. After installing a TTS service, you need to select it in the OS configuration to 
accept activating it. The OS will display one of them as already selected, but it won't simply work 
from being installed as that wouldn't be safe. This is the same as the stock OS but it comes with one 
set up already.

GrapheneOS disables showing the characters as passwords are typed by default. You can enable 
this in Settings > Security & privacy > Privacy > Show passwords.

Third party accessibility services can be installed and activated. This includes the ones made by 
Google. Most of these will work but some may have a hard dependency on functionality from Google
Play services for some of their functionality or to run at all. Accessibility services are very powerful 
and we strongly recommend against using third party implementations if you can get by well without
them. We plan to add safeguards in this area while still keeping them working without problematic 
barriers.

Auditor

See the tutorial page on the site for the attestation sub-project.

https://attestation.app/tutorial
#auditor
#accessibility


Updates

The update system implements automatic background updates. It checks for updates approximately
once every six hours when there's network connectivity and then downloads and installs updates in 
the background. It will pick up where it left off if downloads are interrupted, so you don't need to 
worry about interrupting it. Similarly, interrupting the installation isn't a risk because updates are 
installed to a secondary installation of GrapheneOS which only becomes the active installation after 
the update is complete. Once the update is complete, you'll be informed with a notification and 
simply need to reboot with the button in the notification or via a normal reboot. If the new version 
fails to boot, the OS will be rolled back to the past version and the updater will attempt to download 
and install the update again.

The updater will use incremental (delta) updates to download only changes rather than the whole OS
when one is available to go directly from the installed version to the latest version. As long as you 
have working network connectivity on a regular basis and reboot when asked, you'll almost always 
be on one of the past couple versions of the OS which will minimize bandwidth usage since 
incrementals will always be available.

The updater works while the device is locked / idle, including before the first unlock since it's 
explicitly designed to be able to run before decryption of user data.

Release changelogs are available in a section on the releases page.

Settings

The settings are available in the Settings app in System > System update.

The "Check for updates" option will manually trigger an update check as soon as possible. It will still 
wait for the configuration conditions listed below to be satisfied, such as being connected to the 
internet via one of the permitted network types.

The "Release channel" setting can be changed from the default Stable channel to the Beta channel if 
you want to help with testing. The Beta channel will usually simply follow the Stable channel, but the 
Beta channel may be used to experiment with new features.

The "Permitted networks" setting controls which networks will be used to perform updates. It 
defaults to using any network connection. It can be set to "Non-roaming" to disable it when the 
cellular service is marked as roaming or "Unmetered" to disable it on cellular networks and also Wi-Fi 
networks marked as metered.

The "Require battery above warning level" setting controls whether updates will only be performed 
when the battery is above the level where the warning message is shown. The standard value is at 
15% capacity.

The "Require device to be charging" setting controls whether updates will only be performed when 
the device is charging.

#updates-settings
https://grapheneos.org/releases#changelog
#updates


Enabling the opt-in "Automatic reboot" setting allows the updater to reboot the device after an update
once it has been idle for a long time. When this setting is enabled, a device can take care of any 
number of updates completely automatically even if it's left completely idle.

The "Notification settings" option is a shortcut to the System Updater notification settings which 
allows you to control notification settings from System Updater such as notification dot, lock screen, 
and noisy / silent notifications. These notifications include updater errors, progress, already up to 
date, and reboot prompts. By default all notifications are enabled.

Security

The update server isn't a trusted party since updates are signed and verified along with downgrade 
attacks being prevented. The update protocol doesn't send identifiable information to the update 
server and works well over a VPN / Tor. GrapheneOS isn't able to comply with a government order to 
build, sign and ship a malicious update to a specific user's device based on information like the IMEI, 
serial number, etc. The update server only ends up knowing the IP address used to connect to it and 
the version being upgraded from based on the requested incremental.

Android updates can support serialno constraints to make them validate only on a certain device but 
GrapheneOS rejects any update with a serialno constraint for both over-the-air updates (Updater 
app) and sideloaded updates (recovery).

Disabling

It's highly recommended to leave automatic updates enabled and to configure the permitted 
networks if the bandwidth usage is a problem on your mobile data connection. However, it's possible
to turn off the update client by going to Settings > Apps, enabling Show system via the menu, 
selecting System Updater and disabling the app. If you do this, you'll need to remember to enable it 
again to start receiving updates.

Sideloading

Updates can be downloaded via the releases page and installed via recovery with adb sideloading. 
The zip files are signed and verified by recovery, just as they are by the update client within the OS. 
This includes providing downgrade protection, which prevents attempting to downgrade the version. 
If recovery didn't enforce these things, they would still be enforced via verified boot including 
downgrade protection and the attempted update would just fail to boot and be rolled back.

To install one by sideloading, first, boot into recovery. You may do this either by using adb reboot 
recovery from the operating system, or by selecting the "Recovery" option in the bootloader 
interface.

You should see the green Android lying on its back being repaired, with the text "No command" 
meaning that no command has been passed to recovery.

Next, access the recovery menu by holding down the power button and pressing the volume up 
button a single time. This key combination toggles between the GUI and text-based mode with the 
menu and log output.

https://grapheneos.org/releases
#updates-sideloading
#updates-disabling
#updates-security


Finally, select the "Apply update from ADB" option in the recovery menu and sideload the update with 
adb. For example:

adb sideload raven-ota_update-2021122018.zip

You do not need to have adb enabled within the OS or the host's ADB key whitelisted within the OS to
sideload an update to recovery. Recovery mode does not trust the attached computer and this can 
be considered a production feature. Trusting a computer with ADB access within the OS is much 
different and exposes the device to a huge amount of attack surface and control by the trusted 
computer.

USB-C port and pogo pins control

Our USB-C port and pogo pins setting protects against attacks through USB-C or pogo pins while the 
OS is booted. For the majority of devices without pogo pins, the setting is labelled USB-C port.

The setting is available in Settings > Security > Exploit protection.

The setting has five modes:

• Off
• Charging-only
• Charging-only when locked
• Charging-only when locked, except before first unlock
• On

The default is Charging-only when locked, which significantly reduces attack surface when the 
device is locked. After locking, it blocks any new USB connections immediately and disables USB 
data once any current connections end.

For technical details on how this feature works using a combination of hardware and software 
protection, see the section on the features page.

Web browsing

GrapheneOS includes our Vanadium subproject providing privacy and security enhanced releases of 
Chromium. Vanadium is both the user-facing browser included in the OS and the provider of the 
WebView used by other apps to render web content. The WebView is the browser engine used by 
nearly all other apps embedding web content or using web technologies for other uses. It's also used
by many minor web browsers not forking Chromium as a whole. These apps using the WebView 
benefit from a subset of the Vanadium hardening.

Vanadium was previously primarily focused on security hardening but we plan on adding assorted 
privacy and usability features. In the near future, we plan to add support for always incognito mode, 
improved state partitioning, backup/restore and many other features.

#web-browsing
https://grapheneos.org/features#usb-c-port-and-pogo-pins-control
#usb-c-port-and-pogo-pins-control


Chromium-based browsers like Vanadium provide the strongest sandbox implementation, leagues 
ahead of the alternatives. It is much harder to escape from the sandbox and it provides much more 
than acting as a barrier to compromising the rest of the OS. Site isolation enforces security 
boundaries around each site using the sandbox by placing each site into an isolated sandbox. It 
required a huge overhaul of the browser since it has to enforce these rules on all the IPC APIs. Site 
isolation is important even without a compromise, due to side channels. Browsers without site 
isolation are very vulnerable to attacks like Spectre. On mobile, due to the lack of memory available 
to apps, there are different modes for site isolation. Vanadium turns on strict site isolation, matching 
Chromium on the desktop, along with strict origin isolation.

Chromium has decent exploit mitigations, unlike the available alternatives. This is improved upon in 
Vanadium by enabling further mitigations, including those developed upstream but not yet fully 
enabled due to code size, memory usage or performance. For example, it enables type-based CFI like
Chromium on the desktop, uses a stronger SSP configuration, zero initializes variables by default, 
etc. Some of the mitigations are inherited from the OS itself, which also applies to other browsers, at 
least if they don't do things to break them.

We recommend against trying to achieve browser privacy and security through piling on browser 
extensions and modifications. Most privacy features for browsers are privacy theater without a clear 
threat model and these features often reduce privacy by aiding fingerprinting and adding more state 
shared between sites. Every change you make results in you standing out from the crowd and 
generally provides more ways to track you. Enumerating badness via content filtering is not a viable 
approach to achieving decent privacy, just as AntiVirus isn't a viable way to achieving decent 
security. These are losing battles, and are at best a stopgap reducing exposure while waiting for real 
privacy and security features.

Vanadium will be following the school of thought where hiding the IP address through Tor or a 
trusted VPN shared between many users is the essential baseline, with the browser partitioning state
based on site and mitigating fingerprinting to avoid that being trivially bypassed. The Tor Browser's 
approach is the only one with any real potential, however flawed the current implementation may be. 
This work is currently in a very early stage and it is largely being implemented upstream with the 
strongest available implementation of state partitioning. Chromium is using Network Isolation Keys 
to divide up connection pools, caches and other state based on site and this will be the foundation 
for privacy. Chromium itself aims to prevent tracking through mechanisms other than cookies, 
greatly narrowing the scope downstream work needs to cover. The focus is currently on research 
since we don't see much benefit in deploying bits and pieces of this before everything is ready to 
come together. At the moment, the only browser with any semblance of privacy is the Tor Browser 
but there are many ways to bypass the anti-fingerprinting and state partitioning. The Tor Browser's 
security is weak which makes the privacy protection weak. The need to avoid diversity 
(fingerprinting) creates a monoculture for the most interesting targets. This needs to change, 
especially since Tor itself makes people into much more of a target (both locally and by the exit 
nodes).



WebView-based browsers use the hardened Vanadium rendering engine, but they can't offer as 
much privacy and control due to being limited to the capabilities supported by the WebView widget. 
For example, they can't provide a setting for toggling sensors access because the feature is fairly 
new and the WebView WebSettings API doesn't yet include support for it as it does for JavaScript, 
location, cookies, DOM storage and other older features. For sensors, the Sensors app permission 
added by GrapheneOS can be toggled off for the browser app as a whole instead. The WebView 
sandbox also currently runs every instance within the same sandbox and doesn't support site 
isolation.

Avoid Gecko-based browsers like Firefox as they're currently much more vulnerable to exploitation 
and inherently add a huge amount of attack surface. Gecko doesn't have a WebView implementation
(GeckoView is not a WebView implementation), so it has to be used alongside the Chromium-based 
WebView rather than instead of Chromium, which means having the remote attack surface of two 
separate browser engines instead of only one. Firefox / Gecko also bypass or cripple a fair bit of the 
upstream and GrapheneOS hardening work for apps. Worst of all, Firefox does not have internal 
sandboxing on Android. This is despite the fact that Chromium semantic sandbox layer on Android is
implemented via the OS isolatedProcess feature, which is a very easy to use boolean property 
for app service processes to provide strong isolation with only the ability to communicate with the 
app running them via the standard service API. Even in the desktop version, Firefox's sandbox is still 
substantially weaker (especially on Linux) and lacks full support for isolating sites from each other 
rather than only containing content as a whole. The sandbox has been gradually improving on the 
desktop but it isn't happening for their Android browser yet.

Camera

GrapheneOS has the same camera capabilities and quality as the stock OS. It will match the stock 
OS when comparing the same app on each OS. GrapheneOS uses our own modern Camera app 
rather than the standard AOSP Camera app. GrapheneOS Camera is far better than any of the 
portable open source camera alternatives and even most proprietary camera apps including paid 
apps. On Pixels, Pixel Camera can be used as an alternative with more features. The section below 
has a detailed guide on using GrapheneOS Camera and the following section explains the remaining 
advantages of Pixel Camera on Pixels.

GrapheneOS Camera app

GrapheneOS includes our own modern camera app focused on privacy and security. It includes 
modes for capturing images, videos and QR / barcode scanning along with additional modes based 
on CameraX vendor extensions (Portrait, HDR, Night, Face Retouch and Auto) on devices where 
they're available (Pixels currently only have support for Night mode).

https://developer.android.com/training/camera/supported-devices
https://developer.android.com/training/camera/supported-devices
#grapheneos-camera-app
#camera


Modes are displayed as tabs at the bottom of the screen. You can switch between modes using the 
tab interface or by swiping left/right anywhere on the screen. The arrow button at the top of the 
screen opens the settings panel and you can close it by pressing anywhere outside the settings 
panel. You can also swipe down to open the settings and swipe up to close it. Outside of the QR 
scanning mode, there's a row of large buttons above the tab bar for switching between the cameras 
(left), capturing images and starting/stopping video recording (middle) and opening the gallery 
(right). The volume keys can also be used as an equivalent to pressing the capture button. While 
recording a video, the gallery button becomes an image capture button for capturing images.

Our Camera app provides the system media intents used by other apps to capture images / record 
videos via the OS provided camera implementation. These intents can only be provided by a system 
app since Android 11, so the quality of the system camera is quite important.

The app has an in-app gallery and video player for images/videos taken with it. It currently opens an 
external editor activity for the edit action. GrapheneOS comes with AOSP Gallery which provides an 
editor activity. You can install a nicer photo editor and the Camera app will be able to use it. We plan 
to replace AOSP Gallery with a standalone variant of the gallery we're developing for the Camera app 
in the future.

Using the default 4:3 aspect ratio for image capture is recommended since 16:9 is simply cropped 
output on all supported devices. A device oriented towards video recording might actually have a 
wider image sensor but that's not the case for Pixels or nearly any other smartphone.

Image capture uses lightweight HDR+ on all supported Pixels and HDRnet for the preview on 5th 
generation Pixels. Using the torch or camera flash will result in HDR+ being disabled which is why 
automatic flash isn't enabled by default. The lightweight HDR+ doesn't use as many frames as the 
more aggressive Pixel Camera HDR+. CameraX extensions will eventually provide support for an 
HDR mode with more aggressive HDR+ taking/combining more than only around 3 frames. It 
currently supports a Night mode providing the Night Sight variant of HDR+ inflating the light of the 
scene through combining the frames. Other fancy features like Portrait mode will also depend on 
CameraX extensions being provided in the future. There isn't a timeline for when additional CameraX 
extensions will be added.

Zooming via pinch to zoom or the zoom slider will automatically make use of the wide angle and 
telephoto cameras on Pixels. 5th and 6th generation Pixels (4a (5G), 5, 5a, 6, 6 Pro) have a wide 
angle camera for zooming out to under 1x to capture a much wider field of view. Images taken with 
the wide angle lens won't match the quality of the normal camera, especially with 6th generation 
Pixels. Flagship 4th generation Pixels (4, 4 XL) have a telephoto camera providing 2x optical zoom 
and the Pixel 6 Pro has one providing 4x optical zoom.

By default, continuous auto focus, auto exposure and auto white balance are used across the whole 
scene. Tapping to focus will switch to auto focus, auto exposure and auto white balance based on 
that location. The focus timeout setting determines the timeout before it switches back the default 
mode. The exposure compensation slider on the left allows manually tuning exposure and will 
automatically adjust shutter speed, aperture and ISO without disrupting lightweight HDR+ support. 
Further configuration / tuning will be provided in the future.



The QR scanning mode only scans within the scanning square marked on the screen. The QR code 
should be aligned with the edges of the square but can have any 90 degree orientation. Non-
standard inverted QR codes are fully supported. It's a very quick and high quality QR scanner able to 
easily scan very high density QR codes from Pixels. Every 2 seconds, it will refresh auto focus, auto 
exposure and auto white balance on the scanning square. It has full support for zooming in and out. 
The torch can be toggled with the button at the bottom center. The auto toggle at the bottom left can
be used to toggle scanning for all supported barcode types. Alternatively, you can select which 
barcode types it should scan via the menu at the top. It only scans QR codes by default since that 
provides quick and reliable scanning. Most other types of barcodes can result in false positives. Each
enabled type will slow down the scanning and will make it more prone to false positives especially 
with difficult to scan barcodes such as a dense QR code.

Camera permission is the only one that's required. Images and videos are stored via the Media Store 
API so media/storage permissions aren't required. The Microphone permission is needed for video 
recording by default but not when including audio is disabled. Location permission is only needed if 
you explicitly enabling location tagging, which is an experimental feature.

By default, EXIF metadata is stripped for captured images and only includes the orientation. Stripping
metadata for videos is planned but not supported yet. Orientation metadata isn't stripped since it's 
fully visible from how the image is displayed so it doesn't count as hidden metadata and is needed 
for proper display. You can toggle off stripping EXIF metadata in the More Settings menu opened 
from the settings dialog. Disabling metadata stripping will leave the timestamp, phone model, 
exposure configuration and other metadata. Location tagging is disabled by default and won't be 
stripped if you enable it.

Electronic Image Stabilization (EIS) is enabled by default on devices providing it via the Camera2 API 
and can be disabled using the video settings dialog.

Zero Shutter Lag (ZSL) is available as an opt-in toggle in More Settings and speeds up image capture
for the Camera mode when flash is disabled.

Pixel Camera

Pixel Camera (previously known as Google Camera) can take full advantage of the available cameras
and image processing hardware as it can on the stock OS and does not require GSF or sandboxed 
Google Play on GrapheneOS. Direct TPU and GXP access by Google apps including Pixel Camera is 
controlled by a toggle added by GrapheneOS and doesn't provide them with any additional access to 
data. The toggle exists for attack surface reduction. Every app can use the TPU and GXP via 
standard APIs including the Android Neural Networks API and Camera2 API regardless.

#pixel-camera


We aim to reduce the benefits of Pixel Camera compared to GrapheneOS Camera over time, 
especially on Pixels. Many features of Pixel Camera will end up being available for GrapheneOS 
Camera in the next year or so via CameraX extensions including more aggressive HDR+, Night Sight 
and Portrait. Video features such as slow motion and time lapse are likely further away than within 
the next year. These video features could potentially be provided via CameraX vendor extensions or 
could be implemented via our own post-processing of the video output. Panorama, Photo Sphere, 
Astrophotography, Motion Photos, Frequent Faces, Dual Exposure Controls, Google Lens, etc. aren't 
on the roadmap for GrapheneOS Camera. Video frame rate configuration and H.265 support should 
be available for GrapheneOS Camera in the near future via CameraX improvements along with DNG 
(RAW) support in the further future.

Exec spawning

GrapheneOS creates fresh processes (via exec) when spawning applications instead of using the 
traditional Zygote spawning model. This improves privacy and security at the expense of higher cold 
start app spawning time and higher initial memory usage. It doesn't impact runtime performance 
beyond the initial spawning time. It adds somewhere in the ballpark of 200ms to app spawning time 
on the flagship devices and is only very noticeable on lower-end devices with a weaker CPU and 
slower storage. The spawning time impact only applies when the app doesn't already have an app 
process and the OS will try to keep app processes cached in the background until memory pressure 
forces it to start killing them.

In the typical Zygote model, a template app process is created during boot and every app is spawned
as a clone of it. This results in every app sharing the same initial memory content and layout, 
including sharing secrets that are meant to be randomized for each process. It saves time by reusing
the initialization work. The initial memory usage is reduced due to copy-on-write semantics resulting 
in memory written only during initialization being shared between app processes.

The Zygote model weakens the security provided by features based on random secrets including 
Address Space Layout Randomization (ASLR), stack canaries, heap canaries, randomized heap 
layout and memory tags. It cripples these security features since every app has the values for every 
other app and the values don't change for fresh app processes until reboot. Much of the OS itself is 
implemented via non-user-facing apps with privileges reserved for OS components. The Zygote 
template is reused across user profiles, so it also provides a temporary set of device identifiers 
across profiles for each boot via the shared randomized values.

This feature can be disabled via Settings > Security & privacy > Exploit protection > Secure app 
spawning if you prefer to have faster cold start app spawning time and lower app process memory 
usage instead of the substantial security benefits and the removal of the only known remaining 
direct device identifiers across profiles (i.e. not depending on fingerprinting global configuration, 
available storage space, etc. or using side channels).

#exec-spawning


Bugs uncovered by security features

GrapheneOS substantially expands the standard mitigations for memory corruption vulnerabilities. 
Some of these features are designed to directly catch the memory corruption bugs either via an 
explicit check or memory protection and abort the program in order to prevent them from being 
exploited. Other features mitigate issues a bit less directly such as zeroing data immediately upon 
free, isolated memory regions, heap randomization, etc. and can also lead to latent memory 
corruption bugs crashing instead of the program continuing onwards with corrupted memory. This 
means that many latent memory corruption bugs in apps are caught along with some in the OS 
itself. These bugs are not caused by GrapheneOS, but rather already existed and are uncovered by 
the features. The features are aimed at preventing or hindering exploits, not finding bugs, but they do 
that as part of doing their actual job.

Similarly, some of the other privacy and security improvements reduce the access available to 
applications and they may crash. Some of these features are always enabled under the hood, while 
others like the Network and Sensors toggles are controlled by users via opt-in or opt-out toggles. 
Apps may not handle having access taken away like this, although it generally doesn't cause any 
issues as it's all designed to be friendly to apps and fully compatible rather than killing the 
application when it violates the rules.

You can enable our exploit protection compatibility mode via Settings > Apps > APP > Exploit 
protection compatibility mode. The exploit protection compatibility mode toggle will:

• Switch from hardened_malloc to Android's standard allocator (Scudo)
• Reduce address space size from 48 bit to Android's standard 39 bit
• Disable memory tagging, unless the app has opted-in to it (only on compatible devices)
• Allow native debugging (ptrace) access

All of these changes apply only to the selected app and can be toggled separately.

If you run into an application aborting, try to come up with a process for reproducing the issue and 
then capture a bug report via the 'Take bug report' feature in Developer options. Report an issue to 
the GrapheneOS OS issue tracker and email the bug report capture zip to contact@grapheneos.org 
with the issue tracker number in the subject like "Bug report capture for issue #104". The bug report 
capture includes plain text 'tombstones' with logs, tracebacks, address space layout, register content
and a tiny bit of context from memory from areas that are interesting for debugging. This may 
contain some sensitive data. Feel free to provide only the tombstone for the relevant crash and filter 
out information you don't want to send. However, it will be more difficult to debug if you provide less 
of the information. If the app doesn't work with sensitive information, just send the whole tombstone.

Wi-Fi privacy

Wi-Fi on GrapheneOS is very privacy-friendly and is essentially anonymous as long as apps do not 
leak uniquely identifying information to the network. GrapheneOS avoids allowing itself to be 
fingerprinted as GrapheneOS, other than connections which are documented (see the default 
connections FAQ) and can be easily disabled or forced through a VPN service.

https://grapheneos.org/faq#default-connections
https://grapheneos.org/faq#default-connections
#wifi-privacy
mailto:contact@grapheneos.org
https://github.com/GrapheneOS/os-issue-tracker/issues
#bugs-uncovered-by-security-features


Scanning

MAC randomization is always performed for Wi-Fi scanning. Pixel phones have firmware support for 
scanning MAC randomization going significantly beyond a naive implementation. On many other 
devices, there are identifiers exposed by Wi-Fi scanning beyond the MAC address such as the packet
sequence number and assorted identifying information in the probe requests.

Avoid using hidden APs (i.e. APs not broadcasting their SSID) since all known hidden SSIDs end up 
being broadcast as part of scanning for networks to find them again. SSIDs are not broadcast for 
standard non-hidden APs. Hidden APs are only hidden when no devices are connected. It makes little
sense as a privacy feature, especially for a non-mobile AP where knowing the AP exists can't be used
for tracking it since it doesn't move. The feature reduces your privacy rather than increasing it. If you 
need to use a hidden AP, make sure to delete the saved network afterwards.

Wi-Fi and Bluetooth scanning for improving location detection are disabled by default, unlike the 
stock OS. These can be toggled in Settings > Location > Location services > Wi-Fi and Bluetooth 
scanning. These features enable scanning even when Wi-Fi or Bluetooth is disabled, so these need to
be kept disabled to fully disable the radios when Wi-Fi and Bluetooth are disabled. GrapheneOS itself 
doesn't currently include a supplementary location service based on Wi-Fi and Bluetooth scanning. 
These options impact whether apps such as sandboxed Google Play are able to use the functionality
if you grant them the Location permission. GrapheneOS plans to eventually include an OS service 
based on local databases rather than a network-based service giving the user's location to a server 
whenever location is being used.

Associated with an Access Point (AP)

Associated MAC randomization is performed by default. This can be controlled per-network in 
Settings > Network & internet > Internet > NETWORK > Privacy.

In the stock OS, the default is to use a unique persistent random MAC address for each network. It 
has 2 options available: "Use randomized MAC (default)" and "Use device MAC". In GrapheneOS, the 
default is generating a new random MAC address when connecting to a network. It has 3 options 
available: "Use per-connection randomized MAC (default)", "Use per-network randomized MAC" and 
"Use device MAC".

In rare cases, broken routers are unable to accept new clients once their DHCP table is full instead of
clearing the last recently used entry. You can work around this by manually clearing the DHCP table 
via the router administration page and can switch to the per-network randomized MAC mode to 
avoid triggering the issue again. This would prevent a router being used in any situation where many 
clients naturally come and go even without per-connection MAC randomization and is not generally 
an issue for any modern routers. Per-connection MAC randomization only makes it more likely to 
find a one of the rare routers with this issue.

The DHCP client uses the anonymity profile rather than sending a hostname so it doesn't 
compromise the privacy offered by MAC randomization. When the per-connection MAC 
randomization added by GrapheneOS is being used, DHCP client state is flushed before reconnecting
to a network to avoid revealing that it's likely the same device as before.

#wifi-privacy-associated
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
#wifi-privacy-scanning


GrapheneOS also disables support for stable link-local IPv6 addresses, since these have the potential
to be used as identifiers. It's more sensible to use typical link-local address generation based on the 
(randomized) MAC address since link-local devices have access to both. As of Android 11, Android 
only uses stable link-local privacy addresses when MAC randomization is disabled, so we no longer 
need to disable the feature.

Network location

For more information on the network location feature and how it works, see the features section.

The setting can be found at Settings > Location > Location services > Network location. The available
options are using Apple's network location service, or a GrapheneOS proxy to that service.

To use this feature, you need to make sure that you either have Wi-Fi enabled, or that Wi-Fi scanning 
is enabled at Settings > Location > Location services > Wi-Fi scanning, or you have cell reception (far 
less accurate). Enabling the Wi-Fi scanning setting will allow you to use Wi-Fi-based network location
even if you disable the global Wi-Fi toggle.

LTE-only mode

If you have a reliable LTE connection from your carrier, you can reduce attack surface by disabling 
2G, 3G and 5G connectivity in Settings > Network & internet > SIMs > SIM > Preferred network type. 
Traditional voice calls will only work in the LTE-only mode if you have either an LTE connection and 
VoLTE (Voice over LTE) support or a Wi-Fi connection and VoWi-Fi (Voice over Wi-Fi) support. VoLTE
/ VoWi-Fi works on GrapheneOS for most carriers unless they restrict it to carrier phones. Some 
carriers may be missing VoWi-Fi due to us not including their proprietary apps. Please note that 
AT&T users may see "5Ge" being used when LTE Only mode is enabled as AT&T intentionally 
mislabel LTE services as "5Ge" to mislead users.

This feature is not intended to improve the confidentiality of traditional calls and texts, but it might 
somewhat raise the bar for some forms of interception. It's not a substitute for end-to-end encrypted
calls / texts or even transport layer encryption. LTE does provide basic network authentication / 
encryption, but it's for the network itself. The intention of the LTE-only feature is only hardening 
against remote exploitation by disabling an enormous amount of both legacy code (2G, 3G) and 
bleeding edge code (5G).

Sandboxed Google Play

GrapheneOS has a compatibility layer providing the option to install and use the official releases of 
Google Play in the standard app sandbox. Google Play receives absolutely no special access or 
privileges on GrapheneOS as opposed to bypassing the app sandbox and receiving a massive 
amount of highly privileged access. Instead, the compatibility layer teaches it how to work within the 
full app sandbox. It also isn't used as a backend for the OS services as it would be elsewhere since 
GrapheneOS doesn't use Google Play even when it's installed.

#sandboxed-google-play
#lte-only-mode
https://grapheneos.org/features#network-location
#network-location


Since the Google Play apps are simply regular apps on GrapheneOS, you install them within a 
specific user or work profile and they're only available within that profile. Only apps within the same 
profile can use it and they need to explicitly choose to use it. It works the same way as any other app 
and has no special capabilities. As with any other app, it can't access data of other apps and requires
explicit user consent to gain access to profile data or the standard permissions. Apps within the 
same profile can communicate with mutual consent and it's no different for sandboxed Google Play.

Sandboxed Google Play is close to being fully functional and provides near complete compatibility 
with the app ecosystem depending on Google Play. Only a small subset of privileged functionality 
which we haven't yet ported to different approaches with our compatibility layer is unavailable. Some
functionality is inherently privileged and can't be provided as part of the compatibility layer.

The vast majority of Play services functionality works perfectly including dynamically downloaded / 
updated modules (dynamite modules) and functionality provided by modular app components such 
as Google Play Games. By default, location requests are rerouted to a reimplementation of the Play 
geolocation service provided by GrapheneOS. You can disable rerouting and use the standard Play 
services geolocation service instead if you want the Google network location service and related 
features. This shouldn't be needed outside of testing or obscure use cases, since GrapheneOS 
provides its own opt-in Network Location feature.

Our compatibility layer includes full support for the Play Store. Play Store services are fully available 
including in-app purchases, Play Asset Delivery, Play Feature Delivery and app / content license 
checks. It can install, update and uninstall apps with the standard approach requiring that the user 
authorizes it as an app source and consents to each action. It will use the standard Android 12+ 
unattended update feature to do automatic updates for apps where it was the last installer.

Installation

The simplest approach is to only use the Owner user profile. Apps installed in the Owner profile are 
sandboxed the same way as everywhere else and don't receive any special access. If you want to 
choose which apps use Google Play rather than making it available to all of them, install it in a 
separate user or work profile for apps depending on Google Play. You could also do it the other way 
around, but it makes more sense to try to use as much as possible without Google Play rather than 
treating not using it as the exceptional case.

To install sandboxed Google Play, open our App Store, select Google Play services and install it. This 
will install both Google Play services and Google Play Store which are interdependent. Existing 
installs of sandboxed Google Play from before Android 15 will also have Google Services Framework
installed and it shouldn't be removed.

Google Play services and Google Play Store are updated through the App Store.

You should give a battery optimization exception to Google Play services for features like push 
notifications to work properly in the background. It isn't needed for the Google Play Store app.

#sandboxed-google-play-installation
https://grapheneos.org/features#network-location


Signing in into a Google account is optional, unless you want to use features depending on being 
signed into an account. For example, some apps use Google account authentication instead of their 
accounts having a username and password. The Play Store requires being signed into an account in 
order to install apps or use in-app purchases. This is still true even for an alternate frontend to the 
Play Store. Aurora Store still requires an account but fetches shared account credentials from Aurora
Store's service by default.

The Play Store provides many services used by apps including Play Asset Delivery, Play Feature 
Delivery, in-app purchases and license checks for paid apps. The Play Store app is also the most 
secure way to install and update apps from the Play Store.

Our compatibility layer has support for Play Games Services which you can obtain by installing 
Google Play Games from the Play Store. Many games on the Play Store depend on having Google 
Play Games installed.

Configuration

The compatibility layer has a configuration menu available at Settings > Apps > Sandboxed Google 
Play.

By default, apps using Google Play geolocation are redirected to our own implementation on top of 
the standard OS geolocation service. You don't need to grant any permissions to Google Play or 
change any settings for working location in apps using Google Play geolocation due to our rerouting 
feature.

This is not recommended unless you're testing something or have an obscure use case since our 
network location feature can be used instead, but if you want to use Google's network location 
service to provide location estimates without satellite reception, you can follow these steps:

1. Disable the "Reroute location requests to OS APIs" toggle.
2. Grant "Allow all the time" Location access to Google Play services along with the Nearby 

Devices permission for it to have all the access it needs.
3. Use the "Google Location Accuracy" link from the sandboxed Google Play configuration menu 

to access the Google Play services menu for opting into their network location service.
4. To take advantage of Wi-Fi and Bluetooth scanning, you also need to enable the scanning 

toggles in Settings > Location  > Location services which are disabled by default and control 
whether apps with the required permissions can scan when Wi-Fi and Bluetooth are otherwise
disabled.

Re-routing location to the OS geolocation service will use more power than using the Google Play 
geolocation service unless you enable our opt-in network location feature.

The Google Location Accuracy and Google settings activities would normally be integrated into the 
OS but we don't include any of the standard Google Play integration so there needs to be an app 
providing a way to access them.

The menu also provides links to this usage guide, Play services system settings, Play Store system 
settings and Google settings. The Play services and Play Store system settings are only included for 
convenience since they can be accessed the same way as any other app via Settings > Apps.

https://grapheneos.org/features#network-location
https://grapheneos.org/features#network-location
#sandboxed-google-play-configuration


Location sharing

Location sharing in Google Maps is implemented in Google Play services. It requires enabling both 
the Location permission with "Allow all the time" and the Physical activity permission for Google Play 
services. Our location rerouting feature reimplementing the Google Play location service using the 
OS location service does not apply to Google Play services itself, so Google Play services won't use 
the OS network location service. You can use the instructions above for enabling network location 
via Google Play if you want this. You could continue using rerouting for other apps or disable it to 
avoid needing 2 separate network location services enabled.

Limitations

Our compatibility layer has to be expanded on a case-by-case basis to teach Play services to work as
a regular app without any of the invasive access and integration it expects. In many cases, it doesn't 
truly need the access or we can teach it to use the regular approach available to a normal app. In 
some cases, the functionality it offers fundamentally requires privileged access and cannot be 
supported. For example, Android Auto cannot be supported by default as part of the baseline 
compatibility layer, but is supported as an extension of it with dedicated toggles for the functionality 
that's not possible to implement another way. The same applies to other highly invasive OS 
integration / control or privileged access to hardware. Our compatibility layer is a very actively 
developed work in progress and most of the remaining unavailable functionality is quickly becoming 
supported. In the future, we can also support redirection for more APIs such as FIDO2 rather than 
only the geolocation service.

Functionality depending on the OS integrating Play services and using it as a backend is unavailable. 
An OS integrating Play uses it as the backend for OS services such as geolocation. GrapheneOS 
never uses it as the backend/provider for OS services. In cases such as text-to-speech (TTS) where 
the OS allows the user to choose the provider, Play services can often be used. It's on a level playing 
field with other apps on GrapheneOS.

eSIM support

By default, GrapheneOS has always shipped with baseline support for eSIM, where users can use any
eSIMs installed previously on the device. However, in order to manage and add eSIMs, proprietary 
Google functionality is needed. This is fully disabled by default.

eSIM support on GrapheneOS doesn't require any dependency on Google Play, and never shares data
to Google Play even when installed. It won't connect to a Google service unless the carrier uses one 
themselves.

eSIM support can be enabled in Settings > Network & internet > eSIM support. The toggle is 
persistent across every boot.

Note that if the eSIM installation process does not progress past the "Checking network info..." stage 
despite having a stable Internet connection, you may need to call the USSD code *#*#4636#*#* 
and then enable DSDS in the menu that is presented.

#esim-support
#sandboxed-google-play-limitations
#sandboxed-google-play-location-sharing


If an eSIM locked with a PIN is used, it is recommended to leave the eSIM support toggle enabled 
even after activating the eSIM. This will allow you to disable the eSIM on the lockscreen in case the 
PIN is forgotten. If the eSIM support toggle is disabled and the PIN is forgotten, there is no way to 
access the device unless the PUK is provided.

Android Auto

GrapheneOS provides an option to install and use the official releases of Android Auto.

Android Auto requires privileged access in order to work. GrapheneOS uses an extension of the 
sandboxed Google Play compatibility layer to make Android Auto work with a reduced level of 
privileges.

To install Android Auto, use the GrapheneOS App Store. Android Auto can't be installed through the 
Play Store or other app sources. Android Auto depends on sandboxed Google Play, you'll be 
prompted to install it if it's not already installed.

After installation, Android Auto has to be set up from the Settings > Apps > Sandboxed Google Play > 
Android Auto configuration screen, which contains permission toggles, links to related configuration 
screens, configuration tips, and links to optional Android Auto dependencies.

The permission toggles ask for a confirmation before turning on. The confirmation popup explains 
what access each permission toggle provides.

By default, Android Auto is not granted any kind of privileged access. It's treated the same way other 
apps are treated.

In order to work, Android Auto has to be granted baseline permissions for wired or wireless Android 
Auto. Wired Android Auto requires far less access than wireless Android Auto does. Baseline 
permissions are controlled by the "Allow permissions for wired / wireless Android Auto" toggles.

For some cars, baseline permissions for wireless Android Auto are needed even when using wired 
Android Auto. Therefore, if wired Android Auto is unable to connect to the car with only wired 
permissions granted, try granting wireless permissions instead.

To forward notifications from the device to the car, Android Auto has to be allowed notification 
access. The notification access settings are linked below the permission toggles.

In order to show up in the Android Auto car interface, apps have to be installed from the Play Store 
and include Android Auto support.

See Google's Android Auto Help pages for further Android Auto setup steps and usage instructions.

https://support.google.com/androidauto/topic/6106969
#android-auto


Banking apps

Banking apps are a particularly problematic class of apps for compatibility with alternate operating 
systems. Some of these work fine with any GrapheneOS configuration but most of them have 
extensive dependencies on Play services. For many of these apps, it's enough to set up the 
GrapheneOS sandboxed Google Play feature in the same profile. Unfortunately, there are further 
complications not generally encountered with non-financial apps.

Many of these apps have their own crude anti-tampering mechanisms trying to prevent inspecting or
modifying the app in a weak attempt to hide their code and API from security researchers. 
GrapheneOS allows users to disable Native code debugging via a toggle in Settings > Security & 
privacy > Exploit protection to improve the app sandbox and this can interfere with apps debugging 
their own code to add a barrier to analyzing the app. You should try enabling this again if you've 
disabled it and are encountering compatibility issues with these kinds of apps.

Banking apps are increasingly using Google's SafetyNet attestation service to check the integrity and
certification status of the operating system. GrapheneOS passes the basicIntegrity check but 
isn't certified by Google so it fails the ctsProfileMatch check. Most apps currently only enforce 
weak software-based attestation which can be bypassed by spoofing what it checks. GrapheneOS 
doesn't attempt to bypass the checks since it would be very fragile and would repeatedly break as 
the checks are improved. Devices launched with Android 8 or later have hardware attestation 
support which cannot be bypassed without leaked keys or serious vulnerabilities so the era of being 
able to bypass these checks by spoofing results is coming to an end regardless.

The hardware attestation feature is part of the Android Open Source Project and is fully supported by
GrapheneOS. SafetyNet attestation chooses to use it to enforce using Google certified operating 
systems. However, app developers can use it directly and permit other properly signed operating 
systems upholding the security model. GrapheneOS has a detailed guide for app developers on how 
to support GrapheneOS with the hardware attestation API. Direct use of the hardware attestation API
provides much higher assurance than using SafetyNet so these apps have nothing to lose by using a
more meaningful API and supporting a more secure OS.

A 3rd party community-sourced effort containing banking app compatibility information is 
maintained by PrivSec.dev. GrapheneOS does not make any guarantees regarding the list's validity.

App link verification

Android apps can declare associations with domains in order to handle those URLs in the app 
automatically. For security reasons, app links are disabled by default to prevent apps intercepting 
arbitrary URLs. First party apps associated with a domain are expected to be authorized by the 
domain. Apps can ask for their app links to be verified by the OS by marking them with autoVerify 
in their manifest. The OS will securely confirm that the domain authorizes the app to handle the 
domain's URLs. Users can also manually enable an app's link associations via Settings > Apps > 
APP > Open by default > Add link. Apps can ask users to enable the associations and send them to 
this page in the Settings app.

#app-link-verification
https://privsec.dev/posts/android/banking-applications-compatibility-with-grapheneos/
https://grapheneos.org/articles/attestation-compatibility-guide
#banking-apps


As an example, the first party YouTube app will have the app links verified by the OS automatically 
while the NewPipe app requires manually enabling handling links for YouTube and other sites.

Verification of app links by the OS is done by the Intent Filter Verification Service system app. It will 
use an HTTPS GET request to fetch 
https://example.com/.well-known/assetlinks.json in order to process a request to 
verify that an app can handle example.com links. The app needs to have their app id and signing 
keys authorized by the domain in order for the verification to succeed.

These network requests by the Intent Filter Verification Service to verify app associations with 
domains are commonly confused for network requests made by the apps. It's simply an HTTPS GET 
request without identifying information and doesn't offer a communication channel with the app. 
Redirects won't be followed so there will be a single request for each attempt to verify a domain.

If you don't want automatic app link verification, you can disable the Network permission added by 
GrapheneOS for the Intent Filter Verification Service system app. In the future, we may provide a way 
to disable verification directly instead of stopping it from working. It will make heavily throttled 
attempts to verify a domain after the check failed which won't negatively impact battery life due to 
the conservative JobScheduler-based implementation.

For more details, see the developer documentation on app link verification.

Carrier functionality

GrapheneOS aims to work with all carriers that are officially supported by Google on the stock 
operating system on Pixel devices. Wi-Fi Calling, VoLTE, Visual Voicemail, MMS, SMS, Calling and 5G 
(SA and NSA) all are supported, however some functionality may not be usable due to Google not 
supporting carriers on the stock OS officially or due to GrapheneOS not shipping proprietary apps 
required in order for this functionality to work on some carriers. GrapheneOS extracts CarrierConfigs,
APNs, modem configurations, Visual Voicemail configurations and MMS configurations from the 
stock operating system to ensure users get easy carrier support that "just works".

Please note that in some regions, LTE is referred to as 4G.

Generally 5G, SMS, MMS, Calls and VoLTE will work fine on GrapheneOS with officially supported 
carriers by Google. Wi-Fi calling may vary due to a reliance on proprietary Google apps which 
GrapheneOS does not ship.

If you are having issues with Visual Voicemail, please be aware that AT&T USA users are unable to 
use this feature currently due to a lack of AOSP support. Other carriers are done on a best effort 
basis. We would suggest using Google Dialer with sandboxed Google Play if you are unable to get 
this feature working.

If you are having problems sending or receiving SMS/MMS messages, we suggest that you perform 
the following steps:

• Deregister your phone number from Apple iMessage
• Deregister your phone number from Google Chat Features
• Deregister your phone number from your carrier's RCS service (Not all carriers have this)

https://messages.google.com/disable-chat
https://selfsolve.apple.com/deregister-imessage/
https://play.google.com/store/apps/details?id=com.google.android.dialer
#carrier-functionality
https://developer.android.com/training/app-links/verify-android-applinks


If you continue to have problems despite following the instructions above or you have another carrier
related issue, we suggest that you perform the following steps:

• Some carriers require you to explicitly opt in to use services such as Wi-Fi calling. Consult 
your carrier's documentation on the process for this or contact them.

• Reset Mobile Network Settings in Settings > System > Reset options and then reboot the 
device.

• USA users only: You may need to request your carrier to enable CDMA-less mode if you have 
issues.

• Follow your carrier's instructions for setting up APNs, this can be found in Settings > Network 
& internet > SIMs > SIM > Access Point Names

• If calls do not work and you have LTE-only mode enabled, try toggling it off. If "Allow 2G" is 
disabled, try toggling it back on. Your carrier may not properly support VoLTE.

• As a last resort you may need to ask your carrier for a replacement SIM card.

Some carriers may restrict functionality, such as VoLTE, on imported Pixel devices as they only 
whitelist the IMEI ranges of Pixel device SKUs which were sold locally. You can check your SKU on 
GrapheneOS by going to Settings > About phone > Model > Hardware SKU and using the official 
Google documentation. You should check if such functionality works on the stock OS to 
troubleshoot. It is not possible to change the IMEI on a production device and GrapheneOS cannot 
add support for it since the hardware doesn't support it.

Android 12 introduced support for the GSMA TS.43 standard where provisioning for VoLTE, VoNR 
and Wi-Fi calling may be handled by Google Firebase. Currently it is very rare for carriers to be using 
Firebase to handle this. It is unlikely, but technically possible, that with such carriers you may be 
required to install sandboxed Google Play in order to obtain the former mentioned functionality 
where the carrier has not implemented fallback provisioning via SMS. Currently only US Cellular, 
Orange France, Cspire US, and Cellcom US are using this standard.

GrapheneOS includes bypasses for carrier restrictions on APN editing, tethering via USB, Ethernet, 
Bluetooth and Wi-Fi and the ability to disable 2G (only on 6th generation Pixel devices onwards) 
actions which would not necessarily have been possible on the stock operating system.

https://www.gsma.com/newsroom/wp-content/uploads//TS.43-v11.0-Service-Entitlement-Configuration.pdf
https://support.google.com/pixelphone/answer/7158570
https://support.google.com/pixelphone/answer/7158570
#lte-only-mode


GrapheneOS

• Forum

• Discord

• Matrix

• Hiring

• X

• Mastodon

• Bluesky

• GitHub

• Reddit

• LinkedIn

https://www.linkedin.com/company/grapheneos/
https://reddit.com/r/GrapheneOS
https://github.com/GrapheneOS
https://bsky.app/profile/grapheneos.org
https://grapheneos.social/@GrapheneOS
https://x.com/GrapheneOS
https://grapheneos.org/hiring
https://matrix.to/#/%23community:grapheneos.org
https://discord.com/invite/grapheneos
https://discuss.grapheneos.org/
https://grapheneos.org/
https://grapheneos.org/

	Usage guide
	Table of contents
	System navigation
	Gesture navigation
	3-button navigation

	Storage access
	Storage Scopes

	Contact Scopes
	Accessibility
	Auditor
	Updates
	Settings
	Security
	Disabling
	Sideloading

	USB-C port and pogo pins control
	Web browsing
	Camera
	GrapheneOS Camera app
	Pixel Camera

	Exec spawning
	Bugs uncovered by security features
	Wi-Fi privacy
	Scanning
	Associated with an Access Point (AP)

	Network location
	LTE-only mode
	Sandboxed Google Play
	Installation
	Configuration
	Location sharing
	Limitations
	eSIM support

	Android Auto
	Banking apps
	App link verification
	Carrier functionality


